Cell detection and counting through cell lysate impedance spectroscopy in microfluidic devices.

نویسندگان

  • Xuanhong Cheng
  • Yi-shao Liu
  • Daniel Irimia
  • Utkan Demirci
  • Liju Yang
  • Lee Zamir
  • William R Rodríguez
  • Mehmet Toner
  • Rashid Bashir
چکیده

Cell-based microfluidic devices have attracted interest for a wide range of applications. While optical cell counting and flow cytometry-type devices have been reported extensively, sensitive and efficient non-optical methods to detect and quantify cells attached over large surface areas within microdevices are generally lacking. We describe an electrical method for counting cells based on the measurement of changes in conductivity of the surrounding medium due to ions released from surface-immobilized cells within a microfluidic channel. Immobilized cells are lysed using a low conductivity, hypotonic media and the resulting change in impedance is measured using surface patterned electrodes to detect and quantify the number of cells. We found that the bulk solution conductance increases linearly with the number of isolated cells contributing to solution ion concentration. The method of cell lysate impedance spectroscopy is sensitive enough to detect 20 cells microL(-1), and offers a simple and efficient method for detecting and enumerating cells within microfluidic devices for many applications including measurement of CD4 cell counts in HIV patients in resource-limited settings. To our knowledge, this is the most sensitive approach using non-optical setups to enumerate immobilized cells. The microfluidic device, capable of isolating specific cell types from a complex bio-fluidic and quantifying cell number, can serve as a single use cartridge for a hand-held instrument to provide simple, fast and affordable cell counting in point-of-care settings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microfluidic Electric Impedance Spectroscopy for Malaria Diagnosis

This paper presents a label-free and noninvasive cell-counting assay system for electrical diagnostic tests of Falciparum malaria using electric impedance spectroscopy (EIS). Our system enabled a high-throughput test in a compact form-factor by the integration of a microfluidic device and a custom circuit board. Based on the differentiation of dielectric properties between cells and container m...

متن کامل

Electrical cell counting process characterization in a microfluidic impedance cytometer.

Particle counting in microfluidic devices with coulter principle finds many applications in health and medicine. Cell enumeration using microfluidic particle counters is fast and requires small volumes of sample, and is being used for disease diagnostics in humans and animals. A complete characterization of the cell counting process is critical for accurate cell counting especially in complex s...

متن کامل

Detection of bacterial cells by impedance spectra via fluidic electrodes in a microfluidic device.

In this study, a novel method for detecting bacterial cells in deionized (DI) water suspension is presented by using fluidic electrodes with a hydrodynamic focusing technique. KCl solution was utilized as both sheath flow and fluidic electrodes, and the bacterial suspension was squeezed to form three flowing layers with different conductivities on a microfluidic chip. An impedance analyzer was ...

متن کامل

Impedance spectroscopy-based cell/particle position detection in microfluidic systems.

An impedance spectroscopy-based cell/particle position detection method in microfluidic systems is presented. A single pair of non-parallel surface microelectrodes was utilized to detect the transverse positions of particles/cells flowing in a microchannel without the need for a multi-electrode multi-channel impedance detection. This method can be a simple solution for high-throughput and low-c...

متن کامل

Electrical Impedance Spectroscopy for Detection of Cells in Suspensions Using Microfluidic Device with Integrated Microneedles

In this study, we introduce novel method of flow cytometry for cell detection based on impedance measurements. The state of the art method for impedance flow cytometry detection utilizes an embedded electrode in the microfluidic to perform measurement of electrical impedance of the presence of cells at the sensing area. Nonetheless, this method requires an expensive and complicated electrode fa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Lab on a chip

دوره 7 6  شماره 

صفحات  -

تاریخ انتشار 2007